

8th International Scientific Conference

Technics and Informatics in Education

Faculty of Technical Sciences, Čačak, Serbia, 18-20th September 2020

Session 2: IT Education and Practice Professional paper

UDC: 371.3:004.4UML

204

Building the Payroll Information System for

High Education Institution Using UML –

Master Thesis Work

Stefan Pitulić 1*, Siniša Ilić1, Julijana Lekić1
1University of Priština/Kosovska Mitrovica, Faculty of Technical Sciences, Kosovska Mitrovica,

Serbia
*stefan.pitulic@pr.ac.rs

Abstract: The use of Students’ Team work in developing the information system using the UML method to

properly model the specific business processes in calculation the payroll of a high education institution and

its implementation is described in this paper. The system has been developed by the book, following the

lessons from the courses of the study programme Computer Science and Informatics. The existing legacy

software was studied, gaps were identified and using the UML diagrams the new system was modelled.

Based on the such model and using the free software components, the system was developed, tested and

implemented by the students of master studies. Using the UML for initial modelling and updating the model

according to the changes implemented during the system development, led to the fact that the model

became the documentation based on which the system could be maintained even by developers who didn’t

participate in initial system development.

Keywords: UML, Development of Information Systems, Students’ projects

1. INTRODUCTION

In modern society, it is inconceivable to manually

perform processes which require the repetition of

relatively easy data processing, such as recording

credit cards transactions, perform bookkeeping,

recording of article sales, etc.

In order to educate students whose interests are in

Information Technologies, a number of courses

were designed within the different study

programmes. The knowledge the students gain

through the education process in the area of

Information Technology (IT) and Computer

Sciences (CS) is rather demonstrated through the

students’ practical work. In some High Education

Institutions, the students of IT and CS have to work

in the student team projects, with the task to

develop software [1, 2], to build a solution [3], to

test software [4] or to estimate the quality and

usefulness of UML software modelling tools [5].

The team work is usually introduced for the

students because this is how they will work once

they enter the software development industry. It is

rare for software engineers to work in isolation. As

software engineers our students will also be

assessed on their performance by others in their

workplace, so they need to understand the

appraisal process and how it can help to further

develop their skills as practitioners [1]. In order to

perform development tasks, the students had to

pass programming modules covering Problem

Solving, Program Design and Implementation, and

Object Oriented Program Design Development. The

assessments of the students’ project works are

sometimes performed using the different software

quality models (modularization, reusability,

updatability, etc.) [2], or in number and severity of

software bugs found [4].

The objective of our work was to assign to the

group of the best students of the Computer Science

Master study module a software development and

implementation project that can be implemented

and really used in commercial environment. The

project life cycle had to fulfil all development and

implementation steps (by the book) as it would

have in commercial development company with the

special emphasis on modelling the system before

development and implementation. The specific task

was to replace old one–user system for payroll

calculation (with limited number of functionalities)

with the modern Web based multiple users system.

The work in the project was divided between the

students: collecting the user requirements, building

the model, developing the Web application,

developing the database, implementing the

hardware and software. During the work initially

created models were updated by all parties.

At the end, the work of each student was

incorporated in his/her master thesis work and they

later defended their master theses.

mailto:stefan.pitulic@pr.ac.rs

Session ITEP Pitulić et al.

205

When multiple users of different profiles need to

perform individual business processes on their

workstations using the system, when the

architecture of the system is complex, and when

the system is to be developed using the object

oriented approach, then it is clear that the complex

modelling tool must be selected during the

development. Also, a developing team with clear

shared tasks must be created and more complex

server – client architecture must be designed. Our

team was built from two teachers (Managers and

Architecture Designers) and three students (UML

designer, Java Web Application designer and MS

SQL Server Database Designer). Documenting the

business processes, modelling the classes of the

application and database and designing the system

architecture was performed using the UML [6, 7]

tool; and a three-tier client - server architecture

was selected.

2. LEGACY SYSTEM

The information system to be replaced was

developed in Visual Basic programing language, it

was compiled and the source code was missing.

Access to the information system was limited to

only one user at a time. Although the business

processes required the parallel input of data by

users of different profiles (financial department to

insert the actual monthly workloads of employees,

legal department to update the positions (ranks) of

employees and their work experience, head of

study programme department to update teaching

staff semester workload, etc.), only one user (from

financial department) used to log in and compile

data from the paper to the GUI. He/she used to do

it on particular workstation where the application

and a MS Access database were installed.

The GUI was designed in the form of MS Excel

tables where a user could move between the cells

of two different types: enabled and disabled for

modifications by user. User could modify names of

employees, the number of working hours, type of

employees (teaching/non-teaching staff, academic

rank of teachers), working experience, etc., and

based on these inputs, the application could

calculate values of cells disabled for modification by

user (gross salary, net salary, deductions, etc.).

The codebooks (like academic ranks of teachers,

names of the banks, bank accounts of employees,

codes and names of municipalities where

employees live in, etc.) didn’t exist, all data were

stored in many redundant databases (one database

for one payroll calculation) with non-normalized

tables with many columns and repeating data. For

each Payroll calculation a new database used to be

opened and the data from the database of the

previous period was initially copied into it, thus

allowing modifications for the new payroll

calculation.

A simple MS Access database security was

implemented for default user with a user name and

a password. But, unfortunately, that protection

could be easily overridden by using the free tools

to find or delete a MS Access user's password. This

database also lacked a built-in backup service.

3. MODELING A NEW SYSTEM

For the development of the new system, the UML

method was selected and the system was modelled

using the diagrams of: requirements, activities, use

cases, user interfaces, communication, sequences,

classes, as well as diagrams of data, software

components and deployment.

3.1. Diagram of user requirements

The first step in creating the new or improving the

existing software is to collect user requirements as

well as business rules. In the UML, they are

recorded in diagrams of user requirements. The

requirements are usually grouped by the larger

business processes. The requirements are collected

by reading the existing documents (rulebooks,

reports, etc.) and on clarification meetings with

stakeholders (financial department, legal

department, heads of study program departments,

etc.). In order to document all requirements, for

each one is assigned a unique label and relations

between them is documented. Figure 1 shows user

requirements related to employee master data.

Figure 1. Diagram of user requirements related

to employee master data.

3.2. Activity diagram

The activity diagram is diagram composed of

activities, control flows, objects, object flows,

decisions and partitions (swimming lanes) that

show who perform activities. Activity diagrams can

be used to model high-level business processes,

but they can also be used to model each individual

operation. These operations can be performed

sequentially and in parallel. In Figure 2 is shown, a

sequential flow of business activities for payroll

preparation and calculation. As it can be seen there

are three partitions (stakeholders - user groups):

Legal department. Financial department and the

Payroll system.

req Maticni podaci

ZEMPZ01 -

Omoguciti

ev idenciju

maticnih

podataka

sv akog

zaposlenog

ZEMPZ02 -

Sistem za sv aki

nov ouneti

maticni podatak

dodeljuje ID

ZEMPZ03 -

Maticne

podatke cine:

MBID, JMBG,

Prezime,

ImeRodj itelja,

Ime,

RadniOdnosID,

KorisnikID,

DatumIVreme,

GrupaZID,

KoefStaz,

Telefon, Aktiv an

ZEMPZ04 -

Omoguciti

pretragu

maticnih

podataka po

parametrima:

ime, prezime i

aktiv an

ZEMPZ05 -

Omoguciti

azuriranje

maticnih

podataka

ZOSRO02 -

Sifarnika radnih

odnosa cine:

RadniOdnosID,

RadniOdnos

(naziv)

(from Sifarnici)

ZODGZ02 -

Sifarnik grupe

zaposlenih

cine: GrupaZID,

Naziv GrupeZ,

UNastav i

(from Sifarnici)

Session ITEP Pitulić et al.

206

Figure 2. Activity diagram for Payroll Calculation system.

3.3. Use case diagram

The use case diagram describes how a software

user can perform a process. The use case diagram

is used to show how the system will respond to an

action by the user, subsystem or external system.

Each use case is described via message sequence

between the system and one or more participants.

The essence of this diagram is to define

participants, use cases, as well as to define

connections between participants and use cases.

A global (high level view for the whole system, not

for individual functionalities) use case diagram is

shown in Figure 3. It shows that the user must log

into the system to perform any group of

functionality, and depending on the role assigned

to him/her, he/she will be enabled to perform only

certain operations in the information system. Each

user group has specific rights. There are three

groups of users defined in our information system:

administrator, financial and legal department user,

and five high level use cases: Log in, Maintenance

of the code tables and users, Evidence of the

Employees, norms and workloads, Preparation and

payroll calculation and Report generation.

In the UML tool we used, the icon in a use case

indicates that this use case has a more detailed

diagram (decomposition) related to it.

Figure 3. Global Use Case Diagram.

In Figure 4, the detailed diagram of the high level

use case "Evidence of the Employees, norms and

workloads" is presented. The user from Legal

department is in charge for maintaining the basic

data of employees, positions of employees,

additional functions of employees (dean, vice dean,

act Dijagram aktiv nosti

Pravna sluzba Finansijka sluzba Sistem za obracun plata

Novi zaposleni?

Unos maticnih

podataka

zaposlenog u

sistem

Azuriranje maticnih

podataka

zaposlenog u

sistemu

Nastavno osoblje?

Kreiranje obracuna plate

za nov i obracunski

period

Kreiranje/izmena radnih

listi

Kreiranje/izmena plata

Unete radne liste za sve

zaposlene ?

Izracunav anje

plata

Kreiranje naloga za

placanje (v irmana)

Generisanje XML faj la

za poresku uprav u

Kreiranje Excel faj la

pojedinacnih uplata plata

za sv aki v irman za

komercijalnu banku

Nastavno osoblje?

Stapanje v irmana za

uplatu pov eriocima

Kreiranje izv estaja o

pojedinacnim uplatama

plata zaposlenih po

banci

Azuriranje obracuna

datuma isplate u

obracunima plata

Unos angazov anja

Unos angazov anja za

nov u skolsku

godinu/promena

angazov anja za

postojecu skolsku

godinu

DA

DA

DA

DA

NE

Ne

uc Opsti model

Prijav a na sistem

Prav na sluzba

Globalni Use Case

Administrator

Finansijka sluzba

Odrzav anje sifarnika i

ev idencija korisnika

Generisanje izv estaja

Ev idencija maticnih

podataka, normi i

angazov anja

Priprema i obracun plate

«include»

«include» «include»

«include»

Session ITEP Pitulić et al.

207

heads of study programs, etc.), court decisions

about suspensions of employees (alimony, other

payments based on lost court cases, etc.), bank

accounts of employees, the expected workload of

employees according to the contract, etc.

Figure 4. Use Case Diagram of Evidence of the

Employees.

The use case is properly documented only when a

scenario of using the use case is precisely

described. The scenario consists of clear ordered

messages (interactions) between user and a

system. In order to client understand how future

use cases will work, a system designer must assign

the scenario for each use case (basic and

alternative scenarios), and show to a client the set

of all use cases of the future system with their

descriptions. For example, the diagram of use cases

for maintaining codebook of banks (where

employees have their bank accounts) with a

description of the basic and alternative scenarios is

shown in Figure 5.

Figure 5. The diagram of use cases "maintenance
of the banks".

A user may not understand such messages because

most of them describe user actions on a GUI. That

is why the scenario must have the reference on a

proper user form. Usually in UML a rough GUI is

drawn with its components: text boxes, buttons,

drop down lists, etc. Because we have implemented

the new information system, we show the real web

forms in Figure 6.

Figure 6. User interface for selection of an employee to update his master data.

4. APPLICATION MODELING

4.1. Communication diagram

After the client agrees to the proposed

functionalities of the future system shown through

the use case diagrams and the user interface

layouts, the next step is to design a working

structure (classes) of the system application. The

first step is to create communication diagrams

where for each or the groups of use cases the

classes that must handle functionality of use

case(s) will be identified. This diagram also shows

the connections between different types of classes

and entities involved in messaging. The classes are

of types: Boundary classes (in our case JSP

pages), Entity classes (in our case Beans – the

classes which objects keep the data) and Control

classes (the classes where the system logic is

implemented – Servlet, Data Manager, Peer

classes). In Figure 7 is shown the communication

diagram with the classes needed to implement

functionality of the use cases related to

uc Maticni podaci

Pregled maticnih

podataka

Azuriranje maticnih

podataka

Prav na sluzba

Pregled istorije

zv anja
Pregled istorije

racuna

Pregled istorije

adresa

Pregled istorije

obustav a

Pregled istorije

funkcija zaposlenog

Pregled istorije

koeficijenata

Dodav anje maticnog

podatka

Azuriranje istorije

zv anja

Azuriranje istorije

racuna

Azuriranje istorije

adresa
Azuriranje istorije licnih

racuna

Azuriranje istorije licnih

obustav a

Azuriranje istorije

funkcija

Azuriranje istorije

koeficijenata

zaposlenog«extend» «extend»

«extend»

«extend»

«extend» «extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

uc Odrzav anje sifarnika banki

Korisnik

Pretraga (filtriranje)

Azuriranje banke

Dodav anje banke

Osnovni scenario

1. Korisnik na glavnom meniju klikne na stavku

"Sifarnici"

2. Sistem prikazuje sifarnike

3. Korisnik odabere "Sifarnik banki"

4. Sistem prikazuje stranicu odrzavanja sifarnika

banki

Alternativni scenario (Neuspesno

dodavanje)

8.1 Korisnik ne zeli da klikne na

dugme "Dodaj banku", vec levim

klikom van

granica pop-up ima opciju da zatvori

pop-up.

Osnovni scenario

1. Korisnik na glavnom meniju klikne na stavku

"Sifarnici"

2. Sistem prikazuje l istu sifarnika

3. Korisnik odabere "Sifarnik banki"

4. Sistem prikazuje stranicu odrzavanja

sifarnika banki

5. Korisnik iz padajuce l iste ima opciju da

odabere

"Aktivne" i "Neaktivne" banke.

6. Nakon izbora opcije iz padajuce l iste

korisnik moze da klikne na

dugme "Filtriraj"

7. Sistem prikazuje rezultate fi l triranja

Osnovni scenario

1. Korisnik na glavnom meniju klikne na

stavku "Sifarnici"

2. Sistem prikazuje l istu sifarnika

3. Korisnik odabere "Sifarnik banki"

4. Sistem prikazuje stranicu odrzavanja

sifarnika banki

5. Korisnik klikne na dugme "Azuriraj" za

banku cije podatke zeli da azurira

6. Sistem prikazuje pop-up u kome su vec

popunjeni podaci izabrane banke

7. Korisnik vrsi promenu zeljenih vrednosti

8. Korisnik klikne na dugme "Izmeni podatke

za banku"

9. Sistem prikazuje da je banka uspesno

azurirana

Alternativni scenario

(klik na nazad)

8.1 Korisnik levim klikom van granica pop-up

zatvara pop-up

Alternativni scenario (klik na Nazad)

9.1 Sistem prikazuje obavestenje da

banka nije uspesno dodata

Alternativni scenario

(neuspesno azuriranje)

9.1 Sistem prikazuje gresku, odnosno

prikazuje poruku da podaci nisu uspesno

promenjeni

«include»

Session ITEP Pitulić et al.

208

maintenance of the banks. One can notice the

scenario of the use case in the left upper corner.

Figure 7. Communication diagram for use case:
"search for the bank".

4.2. Sequence diagrams

Based on the proposed classes in communication

diagrams, messages that are exchanged between

those classes are entered into the sequence

diagrams in order to implement the steps described

in the use case scenarios. This type of diagram is

easy for understanding as it shows the sequence of

the messages between classes in time ordered from

the top to the bottom. The decisions (if clauses)

and loops are shown in rectangles with key words

alt and loop. One can also notice the moments of

creating objects of particular classes (objects

appear somewhere in the middle of diagram) and

the references to execution of the other sequence

diagrams (rectangles with a key word “ref”). The

messages in the diagram must contain exactly the

structure of methods or functions calls. The

message must have a clear name with input

parameters and return value type, because the

user who looks at the diagram (in most cases the

developer) must know how to capture those

parameters, send a call to a function or a method

and collects back the return value of the function.

One example of the sequence diagram is presented

in Figure 8.

4.3. Class diagram

Class diagrams are created based on the messages

posted in the sequence diagrams. Messages that

exchange data between different classes become

public functions and belong to the classes receiving

them (to which the arrow in the sequence diagrams

is oriented). The attributes of the classes are

mostly private. In Control class the attributes are

usually pointers to the other classes (to which

current class is communicating to) or pointers of

data been received from other classes; in boundary

class they are GUI controls (text boxes, drop down

lists, buttons, etc.) and in Entity classes they are

attributes that keep data (i.e. name, address,

phone number, email address, etc. for the entity

Employee).

Figure 8. Sequence diagram for use case: "Adding the work norm".

sd Komunikacioni

Korisnik

(from

SifarniciBanki)

MainServ let

Session

DataManager

SifarnikBanki.jsp

Glav niMeni

Serv letRequest

SifarniciPeer

RequestDispatcherKorisnici

Banke

Sablon.jsp

Osnovni scenario

1. Korisnik na glavnom meniju klikne na

stavku "Sifarnici"

2. Sistem prikazuje sifarnike

3. Korisnik odabere "Sifarnik banki"

4. Sistem prikazuje stranicu odrzavanja

sifarnika banki

sd Dodav anje norme

Korisnik
AzuriranjePostavkiNormi.jsp MainServlet DataManager ServletRequest NormePeer RequestDispatcher

ref

Sablon

intSuccess()

unos parametra()

putConnection(connection)

Klik na dodaj ()

getConnection(): Connection

sablon.jsp?action=/jsp/AzuriranjePostav kiNormi.jsp()

unesiNormu(VaziOd, VaziDo, Varijabila, Start, Vazeci, KorisnikID): int

<a href="host/ftnkm/action=UnosNorme"()

getRequestDispatcher(url)

intSuccess()

modalOnoff1()

executeQuery(sql =

"unesiNormu"):

ResultSet

jsp:include()

unesiNormu(this, VaziOd, VaziDo, Varijabila, Start, v azeci, KorisnikID): int

forward(resp, req)

getParameter(VaziOd, VaziDo, Varijabila, Start, Vazeci, KorisnikID): String

Klik na dodaj normu()

Session ITEP Stefan Pitulić et al

209

Figure 9. Class diagram of users and bank
codebook.

Based on the messages on the sequence diagram

in Figure 8, the partial class diagram with only

entity classes (because of the space needed) is

shown in Figure 9. UML tool can generate source

code for each class in the diagram. The created

class source code will have the constructor(s), list

of attributes, and class functions or properties

declarations with all parameters and return values.

The source code will miss the implementation (a

code how each function is executed) and it remains

as a task for the developer. Up to this stage the

functioning (the dynamic) and the classes (the

structure) of an application is modelled.

5. DATABASE DEVELOPMENT

From the entity classes (by involving only attributes

of the classes) an initial database diagram can be

created. Through the several iterations, some

attributes will be suppressed (like pointers to other

classes) and relations between tables will be

established. In cases where entities are related

with cardinality many-to-many new tables will be

created.

Our database consists of several table groups:

users and roles, employees and their properties,

norms and worksheets, payroll and payment

orders. The database scheme of group of tables

"employees and their properties" is presented in

Figure 10.

Because of the paper limitation, the diagrams of

database stored procedures, triggers and other

objects are not presented.

Figure 10. Schematic illustration of database entities related to "employees and their properties".

6. IMPLEMENTATION MODELLING

In UML modelling, it is not enough just to describe

the building and dynamic blocks for application and

database development, but it is also necessary to

design an information system implementation

model. It is important to document the software

packages to be installed on computers in the

production environment, and also to document how

those computers are connected and configured.

6.1. Component diagrams

One of the most important features in the process

of developing complex software solutions is their

architecture, i.e. organisation of components that

communicate with each other. Our application uses

a three-tier architecture, which is composed of

three logically independent tiers (presentation

layer – business logic – database server) that

communicate through the interfaces.

class beans klase

beans::Korisnici

- korisnikID: int

- Ime: String

- ImeKorisnika: String

- Aktivan: boolean

- MBID: int

+ getId(): int

+ setId(int): void

«property get»

+ getIme(): String

+ getImeKorisnika(): String

+ getAktivan(): boolean

+ getMBID(): int

«property set»

+ setIme(String): void

+ setImeKorisnika(String): void

+ setAktivan(boolean): void

+ setMBID(int): void

beans::Banke

- BankaID: int

- NazivBanke: String

- SBanke: String

«property get»

+ getSBanke(): String

+ getBankaID(): int

+ getNazivBanke(): String

«property set»

+ setSBanke(String): void

+ setBankaID(int): void

+ setNazivBanke(String): void

MaticniPodaci

MBID

JMBG

Prezime

ImeRoditelja

Ime

RadniOdnosID (FK)

KorisnikID

DatumIVreme

GrupaZID (FK)

KoefStaz

Telefon

Aktivan

Adrese

rbAdresa1

MBID (FK)

Adresa

VaziOd

VaziDo

Vazece

KorisnikID

DatumIVreme

idTipPiD (FK)

idTipAdr (FK)

OpstinaID (FK)

Funkcije

FunkcijaID

OpisFunkcije

FunkDodatak

Aktivna

FunkcijeZaposlenih

MBID (FK)

FunkcijaID (FK)

rbReizbora

DatumOd

DatumDo

Dokument

Vazeca

KorisnikID

DatumIVreme

GrupeZaposlenih

GrupaZID

NazivGrupeZ

UNastavi

IzborUZvanja

rbIzbora

MBID (FK)

ZvanjeID (FK)

DatumSticanja

DatumIsticanja

BrojDokumenta

ZvanjeVazece

TitulaID (FK)

KorisnikID

DatumIVreme

Koeficijenti

rbKoef

MBID (FK)

Koeficijent

Datum

Vazeci

Dokument

KorisnikID

DatumIVreme

ProcenatAngazovanja

Obustave

rbObustave

MBID (FK)

NazivObustave

DatumOd

DatumDo

Vazeca

Iznos

Procenat

KorisnikID

DatumIVreme

TipObustaveID (FK)

RacunID (FK)

svrha_placanja

PozivNBO

Opstine

OpstinaID

NazivOpstine

PozivNaBO
TekuciRacuniZaposlenih

rbRacuna

MBID (FK)

Racun

VaziOd

VaziDo

Vazeci

KorisnikID

DatumIVreme

BankaID (FK)

TipObustave

TipObustaveID

OpisTipaObustave

Titule

TitulaID

NazivTitule

NazivTituleSkr

ZvanjaPozicije

ZvanjeID

NazivZvanjaPozicije

ZvanjeSkr

GrupaZID (FK)

AdresaPiD

idTipPiD

PiDAdrese

TiAdrese

idTipAdr

TipAdrese

Banke

BankaID

NazivBanke

SBanke

Vazeca

Session ITEP Pitulić et al.

210

In our case, the first tier, the presentation tier, was

made using JSP (Java server page) technology [8]

with the HTML5 web pages [9] for presenting the

content on a web browser of a client, combined with

Java and JavaScript code. The standard computer

network is a required medium that connects an

application user to a second tier server in a

computer centre.

Business logic is written in a Java programming

language using a NetBeans development

environment that uses a GlassFish application

server to develop and run Web applications [10].

In order to application run on a server in a

production environment, the following software

components must be installed on the server side

tier 2: Java Development Kit v8.x, GlassFish v4.0

application server configured to enable SSL,

compiled application in WAR format to be attached

to the GlassFish server, Jasper Reports v5.5.0 for

reporting, DOM (The Document Object Model)

parser for generating XML files, and for tier 3:

Microsoft SQL Server Express 2014 SUBP and the

payroll database to be attached to the SUBP.

The business logic tier retrieves the requested data

from the data tier (using the JDBC interface [11])

and sends them to the presentation tier. The

presented components are shown on Components

diagram in Figure 11.

Figure 11. Component Diagram for payroll
calculation software.

6.2. Deployment diagram

One of the tasks of a deployment diagram is to

show a network architecture of the hardware

components.

The server and workstations in the financial and

legal departments are connected to the Switch

Linksys SE2800, which is connected to a Cisco

router, thus providing Internet access and

communication between workstations and servers

as it is a web-based three-tier application.

7. IMPLEMENTATION OF THE PROJECT

Working on the described project assignment is an

example of development and implementation of a

real software project through the teamwork.

Students who participated on a team that

implemented the project, applied the knowledge

gained mostly from the following courses: Object

Oriented Programming, Databases, Information

Systems, Software Design, and Principles of

Software Engineering in their master theses.

In addition, it was the opportunity for students to

gain significant experience and to overcome in the

most efficient way the problems of applying

theoretical and abstract knowledge to solving

practical problems. Students used the acquired

knowledge, skills, tools and techniques to

implement project activities to meet client

requirements.

Compared to the research results presented in

papers [1-5], where the main indicators were:

involvement of students in tasks during the project

life-cycle via contribution matrices, students’

feedback obtained by questionnaires, estimation of

quality of software related to modularization,

reusability, updatability, etc. obtaining the number

of bugs during test session, in our team work the

main output was satisfaction of the customer after

installing the software.

After first installation of the software for payroll

calculation in very short time, thanks to

modularization and reusability the system

functionalities were extended to process calculation

of compensations for contracted teachers from

external institutions and compensations for work

on scientific and commercial projects. Thanks to

the proper UML documentation, the software is

continuously updating with adding more

functionalities by other students.

By continuously monitoring the results obtained

and evaluating students' work, the teachers gained

a real insight into the students' ability to participate

in the real-world tasks. In the process of monitoring

of students' acquired knowledge in the

implementation of the project, the teachers (as

part of the team) actively participated in order to

project be developed and implemented in an

efficient and effective manner. The teachers were

controlling the UML diagrams during the analysis

and project design and were giving tips for minor

corrections of them. Also, teachers were assisting

in the development of the application and in the

development of the database, as well as in

adjusting the architecture of the system in the

production environment.

The key to successful customer satisfaction, and

thus enhancing a business value, is good project

management. During the team work on this

assignment, students were able to learn how to

manage the project: through the organisation,

cmp Dijagram komponenti

Windows 10 Pro

Version

10.0.17763.437

Glassfish serv er

(v .4.0 build 89)

- Port = HTTPS 8181

- SSL = Port SSL 8181

Serv er

Processor = I5-5600

RAM = 8GB

HDD = 1T

LAN = 100/100 Mb/s

obracun-

plata.war

Microsoft.NET

Framework

(v .3.5)

Microsoft SQL

Serv er Express

(v 2014)

Microsoft.NET

Framework

(v .2.0)

«library»

JDBC (v .6.2)

«libra...

JasperReport

(v .5.5.0)

Glassfish -

web.xml

«library»

jExccel (v .2.0)

«library»

Org.v 3c.dom

Radna stanica prav na

sluzba

Processor = i3-8100

RAM = 4GB

HDD = 500GB

LAN = 100/1000 Mb/s

Radna stanica

finansijska sluzba

Processor = i3-8100

RAM = 4GB

HDD = 500GB

LAN = 100/1000 Mb/s

«database»

baza-plate

JDK (v

8.0_201)

«flow»

TCP/IP
TCP/IP

«use»

«flow»

Session ITEP Pitulić et al.

211

planning and control of activities, through the

division of the project into phases and tasks,

through the rational alignment of all necessary

resources and the coordination of performing the

required activities.

As an integral part of this assignment, the students

learned how to gather the necessary data, analyse

customer requirements and model the future

system so that the system satisfies the clients, and

how to manage the risks, quality and time during

the development of the system. One of the

essential features of the project solution presented

is using the UML (Unified Modelling Language) for

initial modelling of the software and emerging it

into the detailed documentation that allows easy

maintenance and updating of the application and

makes the system flexible for upgrading.

The core functionalities of the project were

completed within the expected period of three

months, and remained functionalities were

developed and implemented in next three months,

within which the full functionality of the system was

obtained.

8. CONCLUSION

This paper describes the practical development of

the real modern three-tier Information System by

students of the master study programme using the

UML as a modelling tool. By creating different UML

diagrams, an object-oriented software is designed

in a well-defined order. Using the UML diagrams,

the other members of the developing team

developed the web based application and the

database. During the development some elements

in diagrams are altered and these diagrams

represent now the detailed development

documentation needed to further upgrade the

software.

The diagrams used confirmed the premise that:

- activity diagrams, user interface diagrams and

use case diagrams can be used for making the

proposal of functioning of the system to the

client negotiations with the client (since any

client can easily read the use case scenario and

understand work on the offered user interface),

- by creating communication, sequence and class

diagrams, the designer maps business rules into

program building blocks in an object-oriented

programming language, which are classes with

their attributes and functions. Based on these

diagrams a developer can easily obtain the

source code of the classes and implement

already identified functions and properties,

- data diagrams with a database scheme and a list

of procedures, triggers and other objects can

facilitate the database developer to properly

design the database,

- component and deployment diagrams document

the real setup of software and hardware

components and enable system architect to

properly configure, connect and run information

system

The implementation of a project management

concept has led to the fulfilment of the project goals

respecting the completion of the project in the

planned time and with the anticipated resources

and quality in accordance with the customer

requirements and later users’ satisfaction.

ACKNOWLEDGEMENTS

This paper was financially supported by the Min. of

Education, Science and Technological Development

of the R. of Serbia under project number TR-35026.

REFERENCES

[1] M. Devlin, L.F. Marshall, and C. Phillips, "Fair
Assessment of Contribution and Process in
Student Team Projects" in Proceedings of the
Informing Science + Information Technology

Education Conference, July 31 - August 5
2017, Ho Chi Minh City (Saigon), Vietnam

[2] F. Koetter, M. Kochanowski, M. Kintz, B.
Kersjes, I. Bogicevic, and S. Wagner,
"Assessing Software Quality of Agile Student
Projects by Data-mining Software
Repositories" in Proceedings of the 11th

International Conference on Computer
Supported Education (CSEDU 2019), pp. 244-
251.

[3] P.B. Cranwell, E.M. Page, and A.M. Squires,

"Assessing Final-Year Practical Work Through
Group Projects", Practice and Evidence of
Scholarship of Teaching and Learning in Higher

Education, Vol. 12, No.3, 2016
[4] D. E. Krutz, S. A. Malachowsky, and T.

Reichlmayr, "Using a Real World Project in a
Software Testing Course" in Proceedings of
SIGCSE’14, March 3–8, 2014, Atlanta, GA, USA

[5] I. Silva, B. Alturas and A. Carneiro, "UML

modeling tools: Assessment in perspective of
users," 2017 12th Iberian Conference on
Information Systems and Technologies
(CISTI), Lisbon, 2017, pp. 1-6, doi:
10.23919/CISTI.2017.7975818.

[6] G. Booch, J. Rumbaugh, I. Jacobson (1998),
Unified Modelling Language User Guide,

Addison Wesley.
[7] S. Ilić, A. Veljović (2017), Database Software

Design at UML, University of Pristina, FTN
K.Mitrovica, University of Kragujevac, FTN
Čačak, Kosovska Mitrovica and Čačak.

[8] JavaServer Pages, retrieved from:
https://www.oracle.com/technetwork/java/ja

vaee/jsp/index.html, last access: June 13th
2020.

[9] C. Murphy, R. Clark and O. Studholme,

"Beginning HTML5 and CSS3", Apress, 2012.
[10] GlassFish, retrieved from:

https://javaee.github.io/glassfish/ last access:
June 13th 2020.

[11] JDBC Basics, retrieved from:
https://docs.oracle.com/javase/tutorial/jdbc/

basics/index.html, last access: June 13th 2020.

https://www.oracle.com/technetwork/java/javaee/jsp/index.html
https://www.oracle.com/technetwork/java/javaee/jsp/index.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

